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I'll do this in two parts.

First I'll give a talk which illustrates my understanding of this area in general, and           
the fundamentals, the core goals and reasons why anyone might do either multi-
threaded programming, or network programming, in the first place. My understanding of 
the forces which shape the solution space and therefore the tradeoffs involved.

Second I'll give some example projects and work challenges where I've applied           
my understanding in this area to do something useful. To solve some actual problem in 
the real world, and ship.

However as I sketched out in my mind a plan for answering this, especially the           
first part, I realized that I couldn't escape talking about operating systems and their 
relation to hardware. In particular, UNIX-like OS's, especially Linux. Since that's what I 
have the most experience with in recent years. Therefore, I'm going to "cheat" by also 
making this answer serve a dual purpose of also giving a taste of my knowledge of the 
Linux kernel, ecosystem and modern high-traffic e-commerce websites on the Internet.

First part... Imagine a simple computer.          

Say a microcontroller.          

It has one brain (one CPU, one core), a small amount of memory, and various           
physical interface points (eg. connectors, ports). When electricity is applied this brain 
comes alive and begins executing whatever instructions are in its memory (which it finds 
encoded there, mathematically, and in binary form.)

To make it do something useful you write a program, deploy it to this MC then           
reboot the card. It executes what it sees in memory, which is your program. Your 
program is now running and it is the sole program running, the only application and it is 
the master of all it surveys, and doesn't have to share access to any of its resources.

However... a day comes when you've incrementally added so many additional           
features to your program that it's becoming unwieldy. Most importantly, instead of all 
these features (these individual subtasks, or flows) needing to run all the time, or 



execute all the time, what becomes clear is that many only need to execute in response 
to certain events. Like a certain time of day, or when a particular signal value is detected 
at one of the physical interfaces (perhaps a sensor, or a communication port.) Therefore 
it would be nice if we could re-architect our program so it becomes chopped up into 
many distinct pieces, each with its own separate control flow and decision logic, and 
each piece could somehow be scheduled to only run when that piece was truly needed. 
This would have the added benefit of potentially using the shared resources more 
efficiently -- for example we could maybe come up with some way to more evenly 
distribute the work load across time, at least for those tasks which didn't care too 
precisely about when they ran. So you learn about the existence of a so-called 
operating system, or OS. You re-design your solution to take advantage of an existing 
third-party OS, and probably switch hardware models as well (because typically the 
overhead costs of having an OS result in needing a little beefier hardware, plus an OS 
itself makes it easier to take advantage of yet beefier hardware.

Your new program runs now on an x86 PC-like SBC and you're using Linux,           
which belongs to the class of OS's called multi-tasking, protected memory systems, 
which means its designed both to allow multiple distinct programs to run, concurrently, 
while also ensuring they can only access their own personal chunks of memory, and 
otherwise won't trample on each others toes. However, your board has only 1 CPU and 
1 core. Therefore only 1 program can ever truly be running at once, inside that CPU, by 
that core. Linux will gladly orchestrate and coordinate the running of 100's of distinct 
programs for its users, making sure they each get a relatively even and therefore fair 
share of CPU execution time (speaking in general; skip talk about priority levels, 
interrupts, etc.). However, you only have 1 core. So the more and more programs you 
add to this board's workload, the slower each one individual will seem to run (speaking 
in general.) So you learn quickly to keep that number as small as possible, in order to 
give the most CPU execution focus to your program, your payload program.

And then... another realization hits you. You analyze your code and realize that           
while certain parts of the flow must be serial (because they have an order-of-execution 
dependency among their component steps), not all do. Some parts of your flow could be 
done in... parallel. In fact, many sections of your code could easily be rewritten to 
execute in parallel. (For example, imagine your program's goal was to count votes from 
ballots in an election. If you had 100M ballots to process, and it took 1 second to 
process each ballot, and you could only process 1 ballot at a time, serially, then, it would 
take 100M seconds for you to finish counting all the votes and decide the winner. 
However, ballot counting is inherently parallelizable. So if you could delegate to say 100 
different processors, each given an equal slice of the total ballots, and have them all 
work in parallel, then, once the last one was done, count up all the subtotals to arrive at 
overall total, etc. you'd finish the overall count task 100 times faster than otherwise. 
Have 1M processors working in parallel, you finish 1M times faster: the entire election in 
100 seconds. This should sell you on the benefit of parallelization. We'll see how it 
applies to threads and networking in a minute.)

So... you decide to rewrite your program so that all those sub-flows which could           
be parallelized, are. But wait... how? This whole time we've been thinking of our 
program as a process. A single process, with a single shared region of working memory, 
and a single thread of execution from the perspective of both the CPU and the OS 



process scheduler. However, if you think about it, all those things don't need to go 
together, not always. They are a bundle of different features, but its possible to break 
them out, keeping some of them but leaving out the rest.

Enter the notion of a thread. A thread and a process are very similar. With some           
important differences. By default, and at least in Linux, when a program runs, it 
becomes a process, with a single thread of execution (essentially just a pointer and a 
little chunk of memory; a relative address within a program's instruction sequence, a so-
called "stack" structure, and the state of values in CPU core's registers which are also 
associated with that same moment in execution time). However, and again at least in 
Linux, it's possible for a program to have multiple distinct threads of execution --- all 
while sharing the same shared region of working memory. Speaking of sharing memory, 
technically each thread has 2 kinds of memory state which are not shared, which are 
unique to them: their register values, and their stack. The stack is a portion of memory 
designed to allow the system to keep a kind of historical log of a program's execution, to 
support cases where generic subroutines are called, and especially to allow recursion. 
The stack allows you to have a nested graph of function calls, and to allow a CPU core 
to know where to jump "back" to when an instruction subroutine has ended or otherwise 
wishes to exit. To jump back in a clean way, and restore the state of registers. As a 
bonus, the stack structure was also used to allow programs to pass parameters in 
function calls, by "pushing" them onto the stack, before the call is carried out, then 
"popping" them off later once no longer needed. Additionally, in many (but not 
necessarily all) programming languages, the stack structure is also where so-called 
local variables are stored -- variables which come to life while the flow is inside a 
subroutine body, and cease to exist when the body exits. Therefore, local variables 
become another kind of private memory which is only accessible by the currently 
executing thread, essentially its owner. Since all threads of a process share the same 
main region of working memory, it enables both good and bad things -- but I'll talk about 
those later.

Right now the key point to threads and why we're considering them in our           
example system is, we realized we had opportunities to parallelize parts of our program, 
and it turns out that threads are one good way of doing that. So... we decide to use 
threads. To have multiple threads. We rewrite the portions of our code which had 
obvious ways to parallelize (eg. our ballot counting tasks), and we make them use 
multiple threads instead. We divide up the overall work into sub-tasks, each with a 
subset of the overall input data, start some number of additional threads (ie. child 
worker threads), handing each the appropriate parameters or (pointers to) their 
assigned data subsets. When all the threads finish, we evaluate all their sub-results, 
figure out how to combine them up (for ballot counting: pretty obvious), and move on. 
Our code is perfect. We run for first time.

And... it is not any faster.          
In fact, it appears to be slower, for some bizarre reason.          
There was a problem.          
Remember we said we only had 1 CPU and 1 core? Well this meant that our           

hardware can only ever execute one program at a time (1 process, 1 thread). Linux will 
do its darnedest to schedule execution slices evenly across all the the various programs 
(processes, threads) competing for CPU execution time. However, if there is only 1 core 



total available, then if someone adds more threads to their program, it won't finish any 
faster (for now: assume speaking in broad strokes, and a perfectly compute-bound 
loads. we'll circle back on this point later.) Therefore... now you realize that the only way 
you can truly speed up your program via parallelization (well, this ballot counting work, 
and assuming perfectly compute bound) is if we have more cores. We clearly need 
more cores or more CPUs.

So we upgrade.          
We migrate our program to a new machine that has 4 CPUs, with (effectively) 4           

cores per CPU. Therefore it has 16 cores and can physically execute 16 process 
threads concurrently. In theory. Still Linux, and everything else is the same. We tweak 
our code perhaps, then re-deploy, run, test... Bingo. Much faster. But now we have a 
new realization. No matter how much we parallelize this program, we'll never be able to 
do more than N tasks concurrently, where N is the number of cores (again, still assume 
compute bound). So the only way to make our ballot counting program run any faster is 
to re-architect to take advantage of multiple computers. Several distinct computing 
nodes or servers. This would also let us "scale up" nicely if our total workload increases. 
If we could redesign to use 2 servers we could either finish our work in 1/2 the time, or, 
finish 2x the work in the same time (in broad strokes.) Likewise for 10 servers, or 100, 
etc. But to do that we need a way to communicate between multiple servers, or 
otherwise coordinate them.

Enter the notion of networks, communication protocols, and distributed           
computing.

At this point I'm going to wave my hands and skip over doing a deeper dive on           
these topics, but I hope I've given you enough sense by now that I can go deeper on 
those topics as well if needed. For my purpose now, I'm just going to say that in order to 
continue evolving our example system we're going to design it to be a distributed 
application, with a client/server architecture, one master control program, and N number 
of "child worker" nodes. This lets us not only parallelize elegantly every possible sub-
flow we find, that's amenable to being parallelized, it also lets us "horizontally" scale up 
our deployed resources to perfectly match how the total workload grows. In theory 
(again, in broad strokes) this ensures we have no ceiling. (We will, in practice, but that's 
for another discussion.) And... we'll keep the multi-threading. But now we'll also have to 
establish connections to the other servers in the cluster, and communicate with them 
over the network. And now we have a bunch of other issues to fight and design 
mitigations around.

For example, in a distributed system, sometimes the other server you're trying to           
talk to... just isn't there. Or they're there but your IP packets didn't reach them -- perhaps 
they got dropped by some device in the middle, perhaps a router failed, or there was too 
much traffic and your packets were de-prioritized, etc. Or your packets reached the 
destination server's network interface but.... the program there which was supposed to 
handle it just wasn't running. Or it was running but it's in a hosed state (a zombie, the 
walking dead). Or it too is multi-threaded (perhaps using a capped pool) and was simply 
overloaded. Maybe that server itself is not overloaded, not broken, no bugs, but itself is 
latency dependent on yet another server behind the scenes (perhaps some database it 
needed to query in order to respond correctly to your own request of it, and that 
database query is taking a long time to finish and respond.) Perhaps you're 



experiencing a MITM attack -- the server you're talking to is not the one you thought you 
were, it's a "bad guy" controlled system. Etc, etc. I'm essentially rehashing what's called 
the Fallacies of Distributed Computing. The takeaway is that the moment you switch to 
a distributed architecture, and do network programming, while they do solve certain 
problems, it also introduces a set of additional ones.

So, for example.... in our new multi-threaded distributed solution we have to take           
into account the various ways that communication between the nodes can fail. We have 
to think much more carefully about state and synchronization. About latency.  
Throughput. Redundancy. Security. But we are now at least taking advantage of every 
core on a machine, and we can have N machines working concurrently. But there are 
some additional problems we haven't talked about yet, dealing with threads.

Returning to threading.... Say on a single standard server we again have 4           
CPUs, 4 cores each, thus 16 total cores. Our program previously was perfectly 
compute-bound. Pure counting, pure number crunching and bit shifting, twiddling 
memory values, etc. But this is a rare case. Most "real world" software is not perfectly 
compute bound. Particularly anything with a human-facing UI. Or if it needs to do lots of 
data IO, like networking or talking to a filesystem. The good news about that is that in 
most generic modern OS's, like Linux, when a program does not have anything to 
compute at the moment (because it's waiting for new input data to arrive for reading or 
its waiting to finish writing to a filesystem or across a socket, eg., or waiting on some 
other event to happen or signal to fire) the OS will be "smart" and not give it to a CPU to 
execute. The Linux process scheduler, for one, will essentially skip over any so-called 
non-runnable processes when it comes to making its execution "load balancing" 
decision. A process might be "running" in the human sense, in that it was started and 
has not exited yet. But if it is not currently ready and able to execute its next instruction, 
because its waiting for something, then, it is not in a "runnable state" from the 
perspective of Linux. The upshot of this is that on a typical server it's not uncommon to 
have 100's of processes alive at once, even though there may only be 16 cores or 8 
cores, etc. And yet everything runs fast enough, with no complaints. Because many of 
those processes are IO-bound, or otherwise waiting for some necessary event to 
happen and trigger their reaction. And Linux/UNIX is smart enough to skip over them in 
the meanwhile. What this means for your program, as an architect, is that it might be 
perfectly fine to design your app to have many more threads than the number of cores 
available on the host machine. If you have a sufficient amount of IO-bound sub-flows. 

Now... how does this apply in our case? Well before we talked about how we did           
ballot counting, it was pure compute, great, but meant could only take advantage of the 
16 cores on our host, nothing more. We have to rewrite to have a distributed 
architecture, and communicate over the network (via sockets, etc.) to worker procs on 
other nodes. Well, now we're talking about IO, and network coordination among servers. 
In our master control program we are no longer necessarily doing any ballot counting. 
That can all be done by other servers, the child worker nodes. Therefore our master 
process may not have as much compute to do as before, but it will have more network 
IO to do. So we might not need as many cores, or as fast of a CPU clock, as we had 
before, on our master server's host. We will have to redesign it so the parallelizable, 
delegate-able work flows get chopped up, assigned and delivered to (or otherwise made 
readable by) the worker nodes. So it will take some work to do that. And that master 



program will need to spend time waiting for all the sub-tasks to finish on the other 
servers, and wait for them to all respond back with results.

Ok then... So I mentioned some problems related to threading (and networking,           
and distributed architectures.) One of the benefits of having a single thread, single 
process architecture was that... it was incredibly simple. You had one shared region of 
working memory to read and write from, and all your code in that running program could 
access it as needed. When you evolved that program to have multiple threads you still 
had the advantage of that single shared memory region.

Therefore when we wrote our multi-threaded solution the first time, we sprinted           
gleefully towards the promised land of parallelized computation, drunk on its power. We 
ran it and then... uh oh.

Weirdness. Weird bugs. Mysterious crashes. Corruption.          
Here's what happened: we were... neophytes -- knowing just enough to design a           

parallelized solution, and just enough to launch threads, divvy up the work, wait for them 
all to finish, aggregate, etc. But we overlooked some very important effects. We didn't 
know about race conditions. Or deadlocks (or their variant: live-locks.) Or the totally 
counter-intuitive pitfalls of double-checked locking, especially in Java -- a phenomenon 
where the reality of the implementation at runtime did NOT honor the semantic promise 
expressed in the original source code. Which is a deeply, deeply, extremely dangerous 
state of affairs. At least to a programmer's mind. Because it's a bit like saying, "Well 
when you press down on the break pedal of your car it does NOT necessarily actually 
apply the breaks. The engine might have decided, as a matter of execution optimization, 
to keep going full speed." Thereby causing a painful surprise when you ram into a brick 
wall. And I have to admit something a little embarrassing. I remember a point in my 
career where I thought I knew everything there was to know about thread issues in 
Java, and therefore correct multi-threaded design in Java, and so was a relative badass 
programmer in terms of shipping "perfect" code because I personally could avoid all the 
anti-patterns.

And then I learned yet more.          
I learned of the existence of the (potentially) broken effects of double-checked           

locking. While working at Orbitz. Where it was helpful, and arguably necessary, to have 
a very deep and complete grasp of thread effects in Java. Because if you did not then 
things like site performance and business metric collection and aggregation could never 
truly be trusted. Especially at the scales we worked at. Anyway, learning about the 
fallacy of double-checked locking was a little like Neo hearing Morpheus describe the 
"real world" to him for the first time. World view? Shattered. Though if anything my 
previous private takeaway about threads was yet further reinforced: tread carefully.

Be very very careful. Avoid if possible. Tread carefully if you cannot.          
It's a bit like in physics when you cross the threshold from the simple falling           

apples and bouncing billiard balls of Isaac Newton's mechanics into the realm of 
Einstein's relativity, and then into Heinsenburg's quantum mechanics. Things get very 
very Weird and counter-intuitive. Things can become so weird and counter-intuitive that 
multi-threaded programming issues are often associated with so-called Heisenbugs. 
Meaning a kind of bug which, when you go to look for it, it seems to disappear. You'll get 
reports of it happening out in production but, when you go to try to reproduce it, you 
can't. It can be extremely hard if not impossible. The name Heisenbug was coined to 



suggest quantum mechanics. A reference to a kind of statistical uncertainty baked into 
all of physics from which you could never escape. On a large enough scale it wasn't an 
issue because it tended to cancel itself out. But if you zoomed in enough it began to 
manifest. Once you were zoomed in enough, you could either determine the position of 
a particle, or it's velocity/momentum, but not both. At least not at the same moment, or 
with the same measurement. And that the very act of measuring a thing would cause 
that thing itself to change. Enter the realm of multi-threaded programming. Run your 
app in a dev environment, with maximum logging, with a debugger attached, 
breakpoints set, metrics counted and latencies timed by a seemingly otherwise 
omniscient profiler? You won't be able to reproduce this particular kind of evil bug. 
Because the conditions now are entirely different than in production. The act of trying to 
observe it, to measure it, has caused the thing itself to change. Perhaps to never 
happen at all.

But we digress, a little.          
Anyway... when you do multi-thread programming what happens for a program is           

the following, in effect. That unified region of working memory? It becomes like a 
shotgun and we just blew off our foot. Because in our 1st implementation with multiple 
threads, we committed the sin of having the threads reading and writing to the exact 
same parts of memory, and we didn't ensure it was done in a coherent, graceful way. It 
was as if two cooks were working in the same kitchen, each preparing a different meal, 
each trying to use the same stove, the same sink, the same bowls, and they clobbered 
each other's steps, intermixing their recipes. Our code had several races between 
threads, and these races were causing data to be corrupted, because multiple threads 
were having their executions "interwoven" in time, by the CPU/OS, in such a way that 
caused the basic order-of-execution semantics of a piece of source code to be... 
violated --- at least in terms of effect.

Our first fix also caused problems. We quickly learned about "locks" (as one           
strategy for preventing races), coded up a solution using them, ran it, the races seemed 
to stop but now another kind of problem started happening -- deadlocks. I'm going to 
wave my hands and jump forward a bit and say, ultimately, what happened is we 
learned that to do multi-threaded programming correctly, with 0 bugs, we had to have a 
very good understanding of both what it enables and makes easy, as well as the pain 
points, and best practices for avoiding those pains and anti-patterns.

To continue our example system evolution, what we might have ended up doing           
to make our parallelized, multi-threaded (yet single server only) architecture work, was 
to perhaps introduce... queues. In our working memory. And then ensured that all 
communication between our threads was done via passing immutable messages 
through these queues. Messages indicating which ballot subsets to count (the work 
requests) and messages indicating the ballot counts returned for a given subset (the 
associated work results or response.)

If we were very lucky all of the raw ballot data combined might be small enough,           
size-wise, to fit in memory, in that single process region of working memory. (And we'd 
just be sure that our counting worker threads only read from that data, never modified 
(mutated) it.) But if we were unlucky the ballot data was too large to fit in memory, and 
thus would have to be read from disk (well, locally attached storage.) Or perhaps 
fetched across the network, from a database.



Which then gets to another problem, or constraint, related to threads, processes           
and distributed architectures. A multi-threaded/single-process architecture can allow you 
to "cheat" by keeping an otherwise large chunk of working memory all in one 
contiguous, shared, easily accessible space. With very very low latency access. 
(Meaning access to read it or write it.) Much lower latency than talking to disk, or across 
a network to a remote computing node. If you have to switch to a multi-process (yet 
single server) architecture, while it is attractive from the perspective of reduced risk of 
races/deadlocks, it also increases chance you'll be more wasteful of memory -- you 
might end up building multiple redundant copies in memory of what are essentially the 
same structures, the same data, the same shared libraries, etc. Now this is a very broad 
strokes complaint, because it depends on the sophistication (or not) of the specific OS, 
of your programming language, your VM (if any), etc. But I can say that in the case of 
many types of stereotypical "enterprise" Java web apps a pretty common issue is 
dependency bloat. The jar explosion. And if you combine that with a monolithic app 
architecture (one program codebase that tries to do everything as one process, even 
though each task flow might only be called rarely) you'll have a harder time scaling up 
your solution, because you simply won't be able to "fit" as many Java procs into a single 
server's memory, at once. (Assuming you tried a high process count, low threads per 
proc, model.) Whereas if you had only 1 Java program process, but with say 60 threads 
(or whatever), you might be able to take advantage of all 16 cores for workload 
compute, and also do lots of network communication (with worker delegates or service/
database dependencies, spending most of their CPU time blocked/asleep while waiting 
for data transfer confirmation), with low latency and low load, reliably.

Next issue, but related. If you have to have many servers in order to parallelize,           
as well as to handle higher traffic, you also have to now think about where data lives, 
how it moves around, latency, availability, retries, cascading failures, data loss, 
synchronization, etc. What can be cached? What should be cached? Do you need a 
database? How do we do deployments? Testing? Monitoring? Backup & restores?

And then... I'll end this part and move on. There's a lot more detail and nuance           
I've left out above, and I'm sure I can revise it and improve it. But hopefully in broad 
strokes it gave a good illustration of my understanding of those topic areas.

Part two...          

In my game Shattered Stars (Java desktop app) I kept the threading situation           
pretty simple. All reactions to user input events, as well as repainting the visuals from 
state, occurred by default in the main thread of the JVM. However for features like 
animations (showing a fleet moving/sliding across the galaxy map from one province to 
another) I did those state update calculations in a background thread -- I was careful to 
manage its lifecycle cleanly, handle exceptions in a bulletproof way, and to not modify 
any shared state (I believe I used a FSM pattern for the app's current mode, but it's 
been a while.)

In EduGamon (in Python) I gave it a multi-process, distributed web app           
architecture, sitting behind a reverse proxy web server at the very front. And therefore it 
was horizontally scalable. I didn't need threads, and pref to avoid them by default unless 
I had a strong reason or clear benefit. I put nginx out in front, as that web server. It 



served static files, and then for certain URL patterns it was considered a dynamic 
request and so I configured it to hand off to a WSGI-compatible Python process running 
behind the scenes. Therefore nginx might have used threads and events, etc. in its own 
process architecture. But down in my own Python application code I designed it to use 
one process per concurrently handled request. Because so much safer and simpler. I 
always knew that if total memory usage per host ever became an issue that I could 
always then, at that time, refactor it to become multi-threaded. But I would not cross that 
bridge until or unless I needed it. As with so many other things in life it was wisest to be 
evidence-driven. You could imagine up the most cool sounding software possible, in 
theory, and yet if you never got enough users in actuality, or especially not enough 
paying customers, then it might not ever truly matter.

Speaking of nginx...          
Every time I've personally ever used nginx in a solution I've configured it to run           

with multiple front-end worker threads, because in that situation it's appropriate to 
minimize the amount of memory needed to handle any given amount of concurrent 
requests (historically, nginx used much less than Apache, for example, even with 
otherwise similar worker configurations.). And because I trusted the nginx devs to have 
(probably) bullet-proof multi-threading code. I believe, and IIRC (without googling now to 
confirm/deny -- which would be trivial when needed) nginx used an additional strategy 
called non-blocking IO, where it used mechanisms like epoll, on Linux or compatible 
platforms. Which meant it could shrink the outstanding resource usage required, at any 
given moment, yet further. But even in a traditionally blocking solution (where each 
thread goes to sleep until woken up when any data-writing call has finished writing and 
can return, or new data available in the buffer to read) a multi-threaded solution is 
capable of using less memory than an equivalent one using multiple processes. 
Threads beat processes, for sake of memory use efficiency, but events always beat 
threads -- speaking as a general rule only, because it is painted in broad strokes.

In several of the iOS apps I wrote (for contract clients) I would have background           
work, or network bound tasks (like fetching files or making web service calls), be done 
in worker threads -- though (IIRC) I never needed to directly launch/manage threads, 
rather, would define "jobs" and hand them off to an iOS API which in turn was 
responsible for ensuring they were executed. iOS has a different set of constraints than 
a typical Linux-based service would have, because on a mobile device things like 
battery power need to be conserved, and there are less cores, running at a lower clock 
speed, with less memory, and both the hardware and OS are much more aggressive 
about not wasting resources. Also the OS wants to keep the touch UI very responsive to 
the enduser so it's important to be more careful about when/where/how jobs are 
executed, and their worst-case latency.

When I was a senior engineer on staff at Cheaptickets.com in Denver, there was           
a period where I worked on the core architecture of the site's codebase (a big Java web 
app on Linux, distributed, horizontally scalable, multiple tiers). And did production 
troubleshooting. I investigated and solved many legacy bugs involving their threading 
and networking code. I fixed many races. I fixed bugs where, say, exceptions were 
thrown which ended up killing manager threads, and housekeeping threads, which in 
turn caused downstream problems like leaks and stale caches, event loss, corruption. 



There was a period where I used to joke there I should wear a T-shirt to work that           
said, "I see race conditions!" because I had spent so much time studying code and 
reading about the Java threading and memory model (books, magazines, papers, posts, 
etc.) that it seemed I couldn't go a week without looking at some piece of legacy code 
(ours or in third party libs we used) and discovering race conditions, deadlock vulns, etc. 

I'll finish with a project example which might be the most pertinent to the reader if           
you worked for, say, a database company of some kind. Because this example of work 
sat precisely at the intersection of the topic of databases, plus multi-threaded 
programming and network-distributed architecture design. On Linux. For a major 
modern web e-commerce shop.

First, some context.          
When I started at Cheaptickets the Ops team had evolved into a standard           

procedure, every night, of manually restarting all of the site's Java web app procs. All 
the JVM instances. Gracefully shutting them down, if they could, then restarting. With no 
other code/config changes. And they tried to do it in a rolling pattern, to help minimize 
impact on customers. And they'd do it at say 2am (local; and IIRC exactly), to try to 
minimize disruption further. Despite these precautions, it still caused disruption for some 
users, some annoyance, because we didn't haven't have a purely stateless design -- 
meaning some aspects of a user's surfing session were "stuck" inside particular JVM 
instances, in memory caches (sessions, shopping carts, etc.) Plus, there's always risk of 
"fat fingering", even doing a graceful, scripted rolling restart. So a human Ops staff had 
to be on-call to do it. Plus anyone else on call (pager duty, one from database, one from 
softeng (like *me* personally, very often, especially during the latter half of my 
employment period there)) also had to be ready to jump in and put out fires if needed. 
Why were they doing it? Because if they didn't, the JVMs would crash otherwise. They 
had leaks which would slowly wreck them otherwise. If they ran for more than a few 
days in prod under normal traffic they'd leak enough to start experiencing 
OutOfMemoryError events, and those themselves would cause mischief, potentially 
putting JVM instances into a "zombie" state -- technically alive and capable of serving 
traffic, but something was broken inside, so not really. Short story, I was asked to 
investigate and solve.

I found several different flaws causing leaks.          
One of which was that in the purchase path flows there were cases where we           

started threads to do background tasks (generally related to reporting, customer 
service, backend, reco, etc.) and in some of those cases these threads would leak and 
live forever. Some would be started but never end. Some would never be started, just 
instantiated, and yet still live forever -- never be GC'ed. One of the root causes was a 
quirk I discovered (independently) in Sun's implementation of Java threads where, it 
was possible to instantiate java.lang.Thread, not start() it, you could then release all 
your references to it (thus you'd assume it would become GC'ed) and... it lived forever. 
Because under the hood in Sun's C/Java impl code of their JVM/JRE, they would 
secretly add your thread to a default ThreadGroup, as a convenience to you. If you 
start()-ed the thread, Sun's code would also be sure to remove it from that ThreadGroup 
eventually, and thus get GC-ed. But if you never called start(), it never got removed from 
that TG, and that TG lived forever, therefore your thread lived forever. Now that thread 
never truly ran, it was just a chunk of memory, so did not add to CPU load, but did 



consume memory. So this slowly leaked away heap until the OOME fest began. I fixed 
that, and other issues, in our app. (I did not make a patched build of their JVM/JRE, just 
of our app codebase, to workaround this quirk.) Then Ops started to let our JVMs keep 
running. No manual rolling restarts anymore. Boom.

Then a new report came in. Database team said they saw a weird pattern where           
in production it looked like there was a slow growth in the number of database 
connections. A kind of leak of database connections. From some of the app servers, but 
not all. And it grew over time. Seemingly at a fixed pace, about once per day, at night. 

Now in our prior normal QA testing, this was never seen, but they also never           
exercised the same conditions. Perf testing and stress testing didn't see this. So it was 
something that happened only in prod, and only with the database tier, and only some of 
our app server JVMs. I investigated. I learned there was something the database team 
did every night, or perhaps their Oracle databases were configured to do it, 
automatically (I don't remember anymore), and only in prod. As a kind of defensive 
precaution on their part, IIRC, some kind of rolling "refresh" signal was sent across the 
database sockets. Or perhaps it was a kind of heartbeat or "still alive?" message --- 
again, I forget exactly. The point was to try to gracefully wake-up the app side of the 
socket, or at least, suggest to that it should rebuild it's end. Every database connection 
would use resources on both sides, in terms of memory (and on database side, perhaps 
other kinds of things like handles or cursors -- again, I forget exactly and would have to 
refresh when needed.)

Anyway, what happened is on the app JVM side, our code was not simply killing           
or rebuilding its connections, it would create a new set, but also keep the original set 
around, thus effectively leaking them. Big multi-threaded app, and we had the common 
pattern where we weren't creating database connections as we went along, ad hoc. 
Because that would (we believed) cause a lot of GC churn, there's extra latency cost, 
etc. So instead our apps built a pool of database connections, with a fixed count (like 20 
or 50, I forget exactly), and reuse them. We had code to ensure it was reasonably 
thread-safe, no more than 1 thread at a time using any given database connection, etc. 
Like a library book you would check one out then return it when no longer needed. 
Rather than write our own connection management layer they picked a FOSS OTS 
library named Proxool, for the pool. Otherwise implemented the standard JDBC 
interfaces. What I saw in the logs and at runtime in a debugger was that, in some cases, 
but not all, Proxool would build a new set of conns, but keep the previous set around -- 
no longer used but still using resources. Not on all servers in prod, but some. Binary jar. 
So I found the source associated with that public release version. Studied the database 
connection lifecycles carefully, the pool management code, init, teardown, resets, edge 
cases, error handling, thread safety, everything.

Then... Bingo!          
Discovered a race condition in the init flow. What this race could cause was           

something exactly consistent with the evidence I saw in prod. It could cause one of it's 
pool record keeping structures to become... out of synch, with another one. Essentially, 
it was possible for connections to be pointed to by one collection (and thus kept alive 
forever) but not in another. If that happened, when the otherwise smart cleanup/close/
recycle/reset logic would trigger, the code in question would not "see" those victim 
connections. So it only half-processed them. They did get taken out of the set of active 



usable connections, but they didn't get taken out of a different set, which kept them 
alive. Since it was a race it didn't always happen. Only on some servers, some times. 
When it did happen in a particular JVM, then forever after they could leak, within that 
JVM instance's lifetime. And that is what happened in prod, causing what the DBA's 
saw.

After I confirmed it was happening, in actual reality, and the complete root cause,           
I next figured out what might be a clean safe fix. Made it. Built a patched in-house 
version of the Proxool binary jar. Bumped our dependency config up to use it. Deployed 
to test, QA, perf, stress, etc. All green. Approved for prod. I volunteered to "escort" the 
deploy (be on-call, watching status metrics, hands on keyboard, etc.) Went live.

And... the database team reported it was solved.          
The mystery connection leak was gone.          

One last note: I do geek out on trying to understand the performance and           
scalability of computing systems. Being aware of different ways to impact these 
qualities. And so as an exercise one day I thought it would be interesting to do a brain 
dump, to write down everything I was aware of from memory. I did it, then kept adding to 
it over time, and finally decided to share it online and maintain it as a portfolio piece. A 
kind of professional cheatsheet list for this topic area. Its reached around 100 entries 
(distinct techniques, patterns, issues, trade-offs, or rules-of-thumb), and includes 
several of the techniques discussed above in this piece. Like multi-threading, 
networking, and distributed architectures. If you're interested in checking it out, here's 
the address:

https://synisma.neocities.org/perf_scale_cheatsheet.pdf          
          

thanks!          
          

Mike          

https://synisma.neocities.org/perf_scale_cheatsheet.pdf

