
Maxitize
A Project Introduction

by Mike Kramlich

2016 October 5

This project is purely a portfolio showpiece. The goal is to have an excuse to play 
with certain ideas, tech and toolkits related to data science, marketing, business analytics, 
math, machine learning and some recently popular cloud services. To apply and integrate 
them in a useful and coherent way. And to demonstrate in public my understanding or 
expertise in these areas.

The topic domain chosen for an application is that of a mock online store and 
advertiser (like Amazon but simpler and much smaller) and the ostensible end goal is to 
maximize profits for this imaginary business. I plan to publish and revise code and write-
ups periodically, as pieces become mature enough. And to include more details such as 
the implementation tech mix & architecture, and any test data or performance metrics.

First, about the name. Chosen quickly. It may not be unique and there may already 
be something else out there using this name. Initially we don't care. But its good to have a 
name, especially one that is relevant and exciting. We can change it later if it ever 
becomes important. For now I liked it because the name is evocative of three key features 
or themes of the project: maximizing the monetization of products and/or the return on 
advertising. Therefore my own made-up term for the pursuit of this goal is... to maxitize.

I will write the code in Python, at least initially. This helps with rapid 
development, both because its a concise and low ceremony language, and because its 
already my preferred language for getting things done. Python also has a lot of mature 
libraries and good ecosystem support for dealing with data and math.

I will use sqlite3 as the initial data store. This gives us SQL for CRUD operations 
and a proven ACID database. We could migrate to PostgreSQL in the future if that 
became necessary. We might augment with more exotic data stores like Redis, Neo4J or 
Cassandra, to give a few examples, in cases where they might be a better fit.

There will be no automated tests, at least initially. This helps us to move faster. 
Ultimately we may switch to complete test coverage and even strict TDD if the code were 
to acquire a significant user base, or customers. Because in those situations the benefits 
would outweigh the costs. At the very beginning, however, we want to be fast and agile. 
Perhaps the project will be abandoned anyway. Tests are a kind of premature 
optimization, or speculative makework, at this stage. Though tests are so helpful in 



production code, especially with a large number of customers, users and developers, that 
they should be considered such best practice that their absence in those situations would 
be inexcusable.

I want to be very very clear about a certain point to anybody reading this who is 
rabidly pro-test: I love tests, I love automated tests and TDD, I totally appreciate them. 
But they do impose a burden and there are cases and time periods where it is wiser to not 
have them. For this project, at start, it's wiser to not have them. It's different from other 
common best practices (such as backups, version control, RDD, CLI bias, thinking 
carefully, incremental development, Always Working Code, KISS, etc.) in that most of 
those other best practices impose very little additional marginal cost on the development 
workflow, in order to reap their benefits. Especially early on. Therefore, it is always wise 
to follow those practices, no matter what. And regardless of the company, project or its 
stage in the lifecycle it is always wise to have a smart programmer who thinks carefully, 
prioritizes, decides, types fast, solves and ships. There's a cost to this, too, but it's always 
worth paying.

I'll use git for version control and publish code to GitHub in a public repo or gists.
I'll develop on a Mac laptop, and only support Mac, initially. Ultimately we'll add 

Linux and that would likely become our ideal platform to target.
I'll practice RDD (README-driven development). Or something similar to it.
I'll practice CLIFMO. This is a term I've coined. Its an acronym for "CLIs First, 

Maybe Only." The basic idea is not original with me, lots of programmers practice 
something like this. But I wanted to make a term for it. Plus I've expanded on the core 
element, the bias to CLIs and Terminal based workflows, to add some additional rules 
and architectural patterns which I think are aligned with them, and achieve a kind of 
bonus synergy. For those who are interested, I'd like to go into more detail in a separate 
piece about my vision for CLIFMO. It is such good practice, such a strong strategy and 
set of ideas, that it should be taught as best practice. The absence of CLIFMO in a 
modern software project should raise critical eyebrows in the same way that the absence 
of version control, or the absence of backups, RDD or TDD should raise eyebrows.

Anyway, that's it for now. I'll go into more detail in the next post in the series, I 
think probably including more about the vision and architecture of the Maxitize engine.

Until then, remember: relax, stay sharp and keep your lasers handy. The Computer 
is your friend!

(The cool kids will get that reference.)

--------------------------

author: groglogic@gmail.com
http://synisma.neocities.org/resume_Mike_Kramlich__Software_Engineer.pdf

mailto:groglogic@gmail.com
http://synisma.neocities.org/resume_Mike_Kramlich__Software_Engineer.pdf

